

Seismic Methods Used To Check Strength of Concrete Runway Reconstruction

Dean Rue, P.E. CH2M HILL

2010 FAA Airport Technology Transfer Conference

Atlantic City, NJ

April 20 - 22, 2010

Project Description

- Client has requested that Airport name not be used due to some outstanding close-out issues
- This presentation is about the technology used to identify strength of PCC
- Project was to remove and replace a Concrete Runway
- Small hub air carrier airport, runway over 10,000', in 2006

Problem with PCC Strength

- During construction, concrete appearance changed
- Very dark color and no typical concrete smell
- Contractor continued paving that day
- Next day, joint sawing spalled badly, core collapsed
- Paving stopped until problem identified and corrected

Problem Concrete Removed

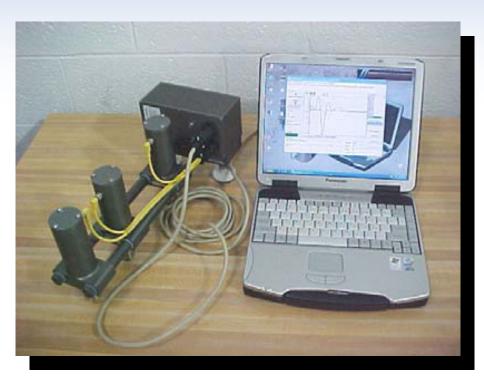
Problem Identified and Corrected

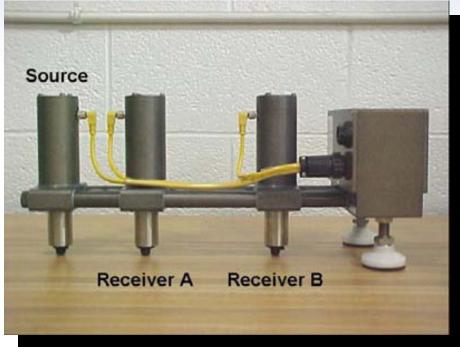
- Quickly determined excess fly ash in mix
- Cement silo had fly ash in it, was emptied
- Contractor investigated found SAME leased trucks used for cement and fly ash, weren't cleaned out
- Started paving again
- Problem happened again within 2 weeks
- Contractor installed colored flanges to silos
- Truck driver had to check out proper flange from superintendent to unload

Colored Flanges

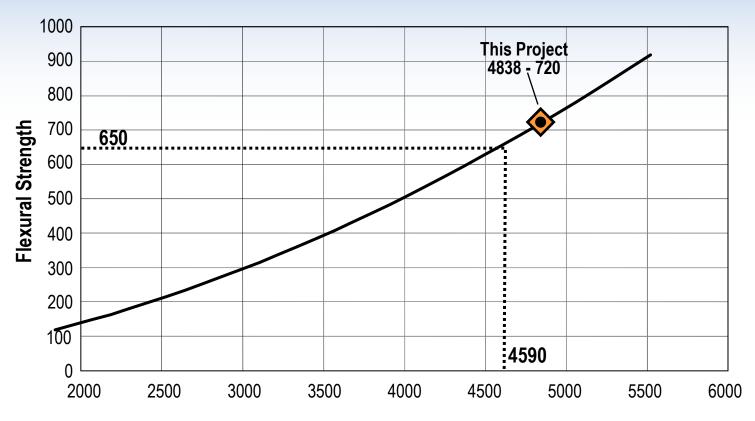
Contaminated PCC Removed

- PCC removed that was clearly visually contaminated
- Difficult to identify the exact location of start of contamination
- Removal progressed all directions until visually "sound" PCC found
- Contractor immediately replaced all of the removed PCC
- Lingering doubts if PCC left contained more that 30% fly ash in mix design


Verification Process


- Evaluated coring, would have required too many to be effective
- Relatively new non-destructive testing using seismic methods
- Research funded by IPRF, Report in 2006
- Principal investigator Dr. Soheil Nazarian, Univ of TX, El Paso
- Portable Seismic Pavement Anyalyzer (PSPA)

PSPA Instrumentation


PSPA Definition

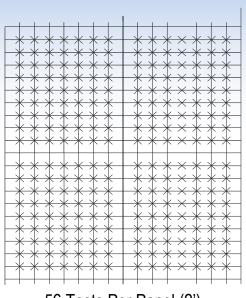
- Generation, detection & measurement of velocity of elastic waves within a medium
- Measured velocity converted to modulus of elasticity (seismic modulus)
- In the field impact pavement surface with source & monitor with receiver
- Direct relationship between seismic modulus and PCC strength

Typical Relationship Seismic Modulus and Strength

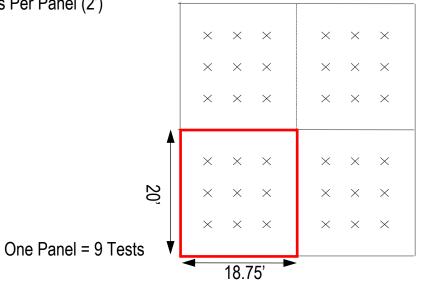
PSPA Seismic Modulus

Typical PSPA Process

- Prepare PCC specimen (cylinder or beam)
- Seismic modulus test of specimen in lab
- Test strength of specimen
- Results give relationship
- Seismic modulus with PSPA from existing pavement in field
- Correlation of seismic modulus values between specimen and field
- Estimate pavement strength in the field

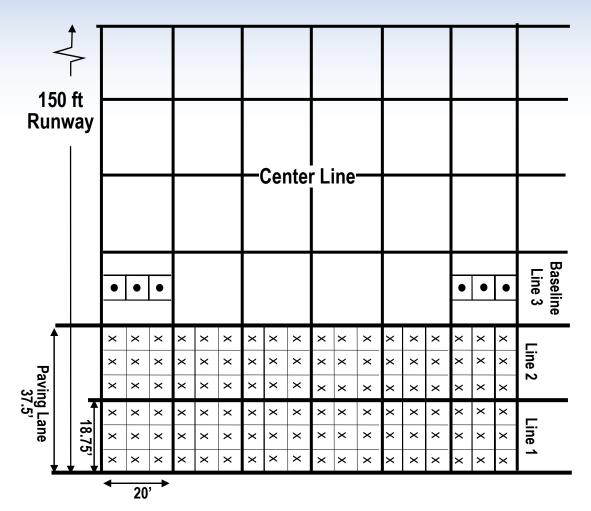

This Project Modified Process

- Paving complete, so no PCC mix available
- Established baseline modulus from existing PCC inplace that was acceptable (instead of from lab)
- Modulus of existing thickness cores, taken earlier, to compare to baseline
- Then modulus from pavement areas in question
- Correlation of baseline to cores and then baseline to questionable PCC
- Determine if questionable PCC strength is acceptable
- Evaluated number of test per panel, 9 selected

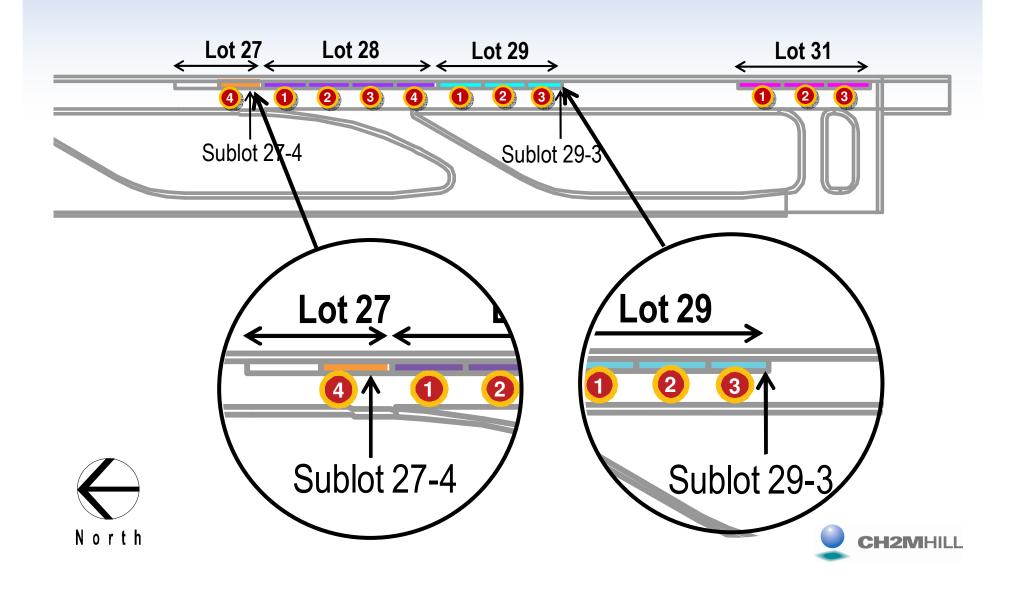


PSPA Possible Testing Locations

37.50' Paved Width 5 Tests Per Panel

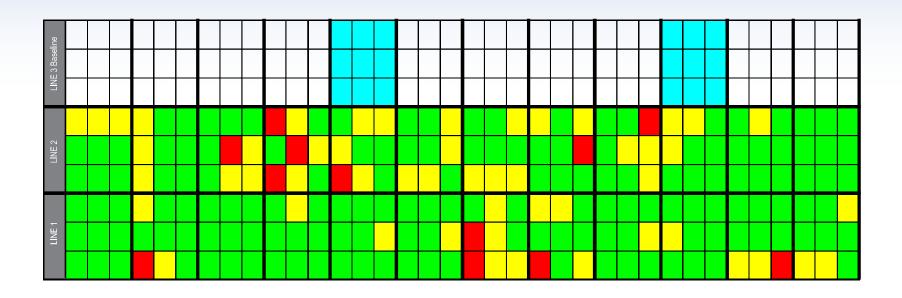

56 Tests Per Panel (2')

Schematic of PSPA (Control)Field Tests



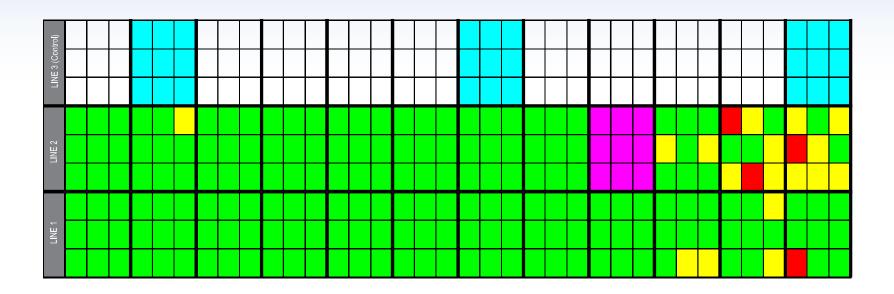
- **X Questionable PCC**
- Baseline PCC

4 Lots and 11 Sublots That Were Tested


Results of PSPA Testing

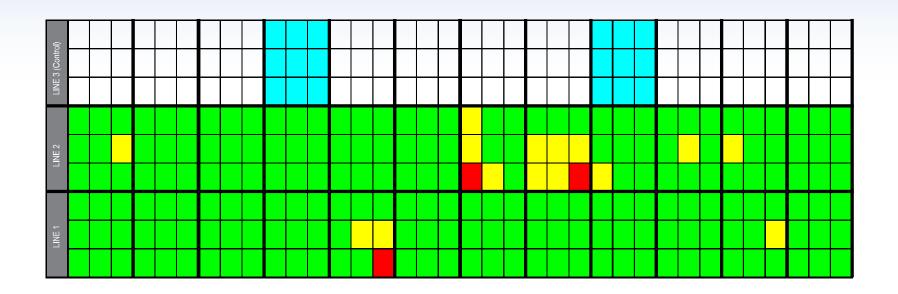
Color Code	Result
Green	Measured modulus is similar or higher than baseline modulus
Yellow	Measured modulus is somewhat less than baseline modulus
Red	Measured modulus is substantially less than baseline modulus
Purple	Panels Removed and Replaced by Visual Inspection
Blue	Baseline Panels - Acceptable

Sublot 27-4


Measured modulus is similar or higher than baseline modulus
Measured modulus is somewhat less than baseline modulus
Measured modulus is substantially less than baseline modulus
Panels Removed and Replaced By Visual Inspection

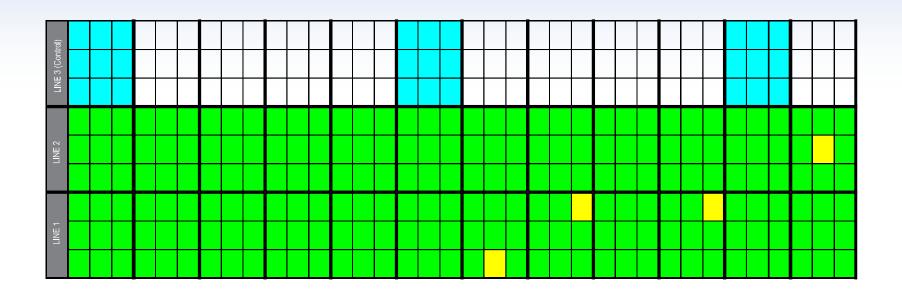
Baselin	Panels (Control) - Acceptable
---------	-------------------------------

Panels (18.75'x 20)		Test Sites
Total	24	216
Red	9	12
Yellow	12	52



Measured modulus is similar or nigher than baseline modulus
Measured modulus is somewhat less than baseline modulus
Measured modulus is substantially less than baseline modulus
Panels Removed and Replaced By Visual Inspection
Baseline Panels (Control) - Acceptable

Panels (18	.75'x 20)	Test Sites
Total	23	207
Red	3	4
Yellow	3	16



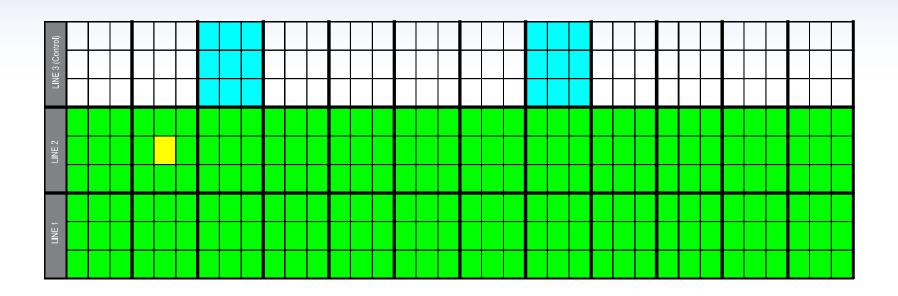
Measured modulus is similar or higher than baseline modulus
Measured modulus is somewhat less than baseline modulus
Measured modulus is substantially less than baseline modulus
Panels Removed and Replaced By Visual Inspection
Baseline Panels (Control) - Acceptable

Panels (18.75'x 20)		Test Sites
Total	24	216
Red	3	3
Yellow	5	15

ľ	Measured	modulus	is similar	or higher	than	baseline	modulus
---	----------	---------	------------	-----------	------	----------	---------

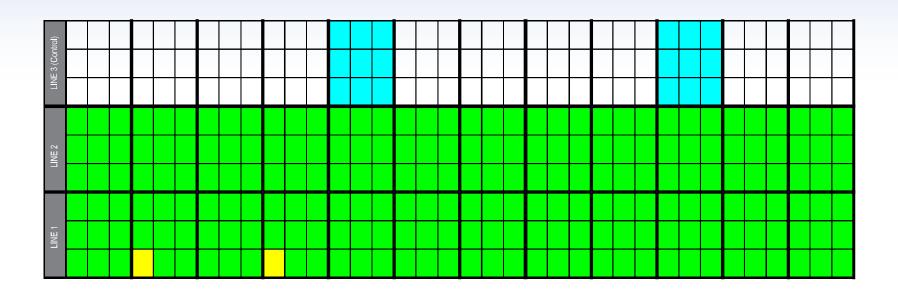
Measured modulus is somewhat less than baseline modulus

Measured modulus is substantially less than baseline modulus


Panels Removed and Replaced By Visual Inspection

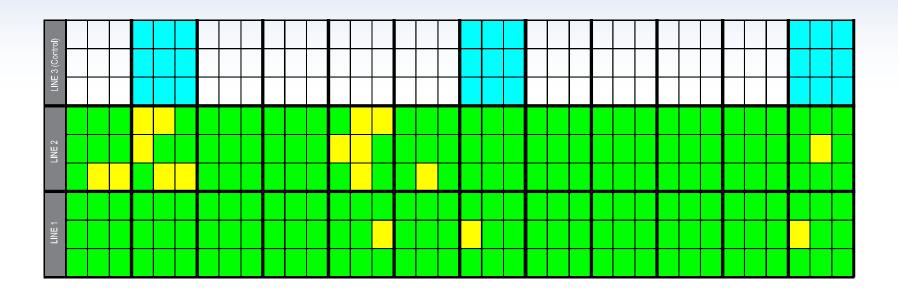
Baseline Panels (Control) - Acceptable

Panels (18	.75'x 20)	Test Sites
Total	24	216
Red	0	0
Yellow	4	4


Measured modulus is similar or higher than baseline modulus
Measured modulus is somewhat less than baseline modulus
Measured modulus is substantially less than baseline modulus
Panels Removed and Replaced By Visual Inspection
Baseline Panels (Control) - Acceptable

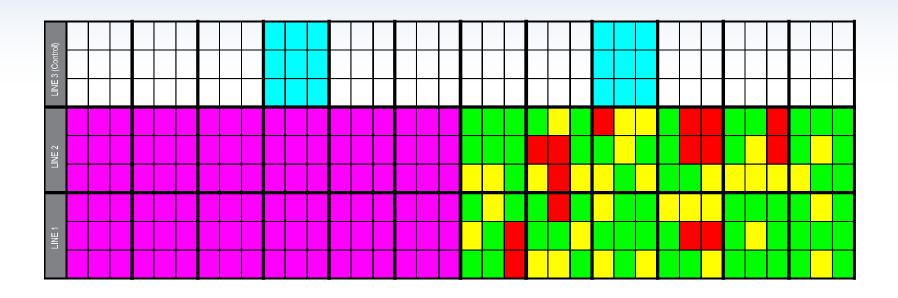
Panels (18	.75'x 20)	Test Sites
Total	24	216
Red	0	0
Yellow	1	1

Sublot 29-1


Measured modulus is similar or higher than baseline modulus
Measured modulus is somewhat less than baseline modulus
Measured modulus is substantially less than baseline modulus
Panels Removed and Replaced By Visual Inspection
Baseline Panels (Control) - Acceptable

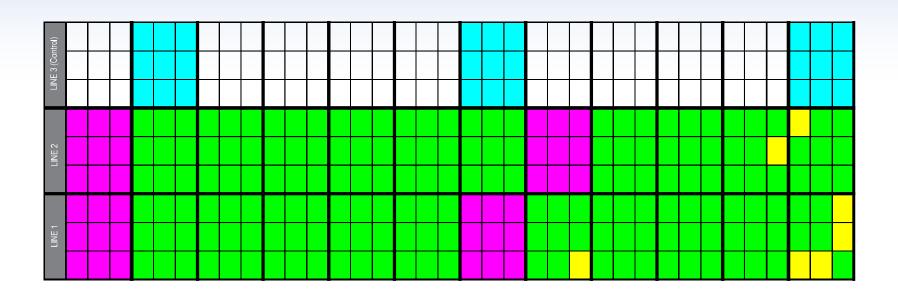
Panels (18.75'x 20)		Test Sites
Total	24	216
Red	0	0
Yellow	2	2

Sublot 29-2


Measured modulus is similar or higher than baseline modulus
Measured modulus is somewhat less than baseline modulus
Measured modulus is substantially less than baseline modulus
Panels Removed and Replaced By Visual Inspection
Baseline Panels (Control) - Acceptable

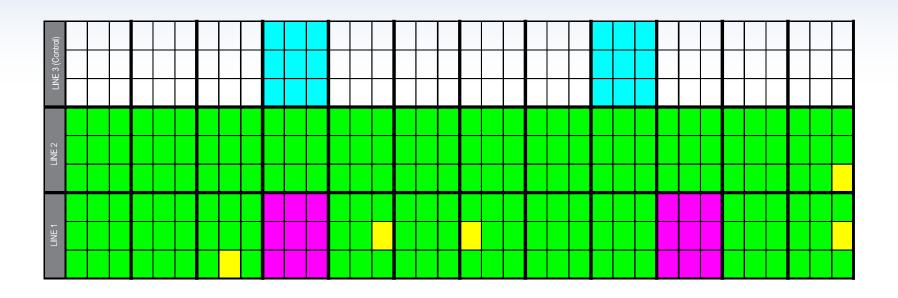
Panels (18.75'x 20)		Test Sites
Total	24	216
Red	0	0
Yellow	8	17

Sublot 29-3


Measured modulus is similar or higher than baseline modulus
Measured modulus is somewhat less than baseline modulus
Measured modulus is substantially less than baseline modulus
Panels Removed and Replaced By Visual Inspection
Baseline Panels (Control) - Acceptable

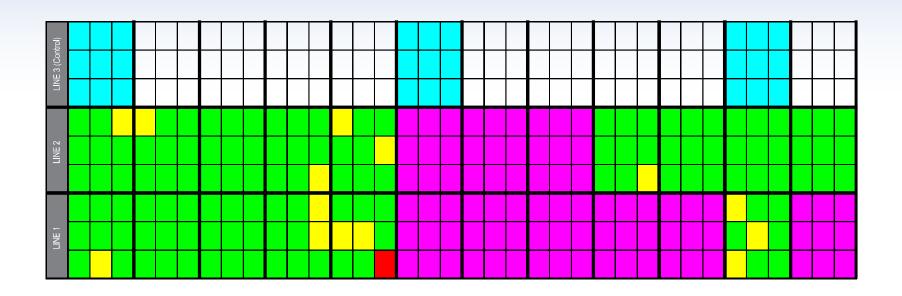
Panels (18.75'x 20)		Test Sites
Total	12	108
Red	7	15
Yellow	5	32

Sublot 31-1


Measured modulus is similar or higher than baseline modulus
Measured modulus is somewhat less than baseline modulus
Measured modulus is substantially less than baseline modulus
Panels Removed and Replaced By Visual Inspection
Baseline Panels (Control) - Acceptable

Panels (18.75'x 20)		Test Sites
Total	20	180
Red	0	0
Yellow	4	7

Sublot 31-2


Measured modulus is similar or higher than baseline modulus
Measured modulus is somewhat less than baseline modulus
Measured modulus is substantially less than baseline modulus
Panels Removed and Replaced By Visual Inspection
Baseline Panels (Control) - Acceptable

Panels (18.75'x 20)		Test Sites
Total	22	198
Red	0	0
Yellow	5	5

Sublot 31-3

Measured modulus is similar or higher than baseline modulus
Measured modulus is somewhat less than baseline modulus
Measured modulus is substantially less than baseline modulus
Panels Removed and Replaced By Visual Inspection
Baseline Panels (Control) - Acceptable

Panels (18.75'x 20)		Test Sites
Total	15	135
Red	1	1
Yellow	9	14

Summary of Results

Summary of Panels (18.75' x 20.00')
(Any panel with one or more red test site)

Sublot	# of Red	% Red	% Yellow	
27-4	9	38	50	
28-1	3	13	13	
28-2	3	12	21	
28-3	0	0	17	
28-4	0	0	4	
29-1	0	0	8	
29-2	0	0	33	
29-3	7	58	42	
31-1	0	0	20	
31-2	0	0	25	
31-3	1	7	60	
Total	23			

Marginal Marginal

Summary of Testing

Total Test Sites: 2,126

Red Test Sites: 35

Total Panels: 236

Red Panels: 23

Sublots to Further Evaluate: 27-4 and 29-3

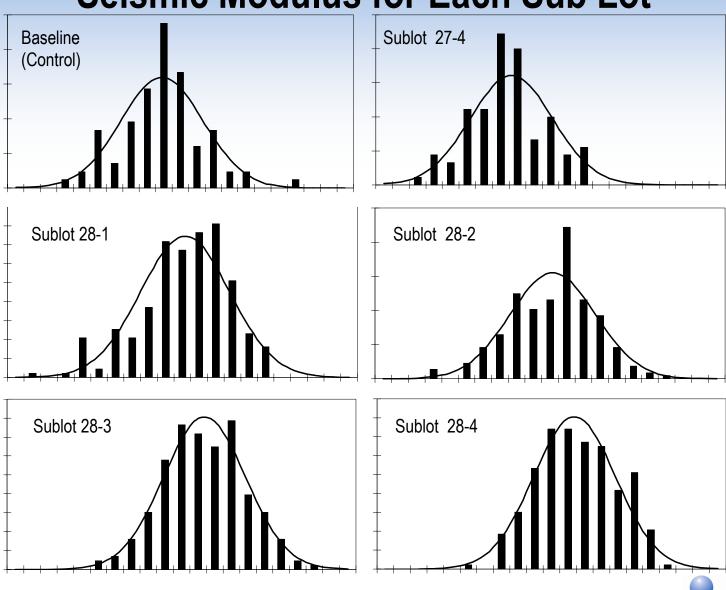
Reliability-Based Assessment of Sublots

	PSPA Modulus, ksi		Probability of Moduli from				
Lot	Lot Sublot	Average	Standard Deviation	Sublot Being Less than Baseline Slabs (P _F)	Statistical Interpretation (as compared to baseline slabs)		
Base	Baseline 4838 248		248	N/A			
27	4	4714	247	64%	Lower Moduli		
	1	4964	245	36%	Higher Moduli		
28	2	4966	268	36%	Higher Moduli		
20	3	5088	253	24%	Higher Moduli		
	4	5112	244	22%	Higher Moduli		
	1	5039	245	25%	Higher Moduli		
29	2	4877	176	45%	Similar		
	3	4608	205	75%	Lower Moduli		
	1	4938	226	38%	Higher Moduli		
31	2	4937	202	38%	Higher Moduli		
	3	4878	202	45%	Similar		

Comparison of Thickness Cores To Field PSPA for Quesionable Lines 1 and 2

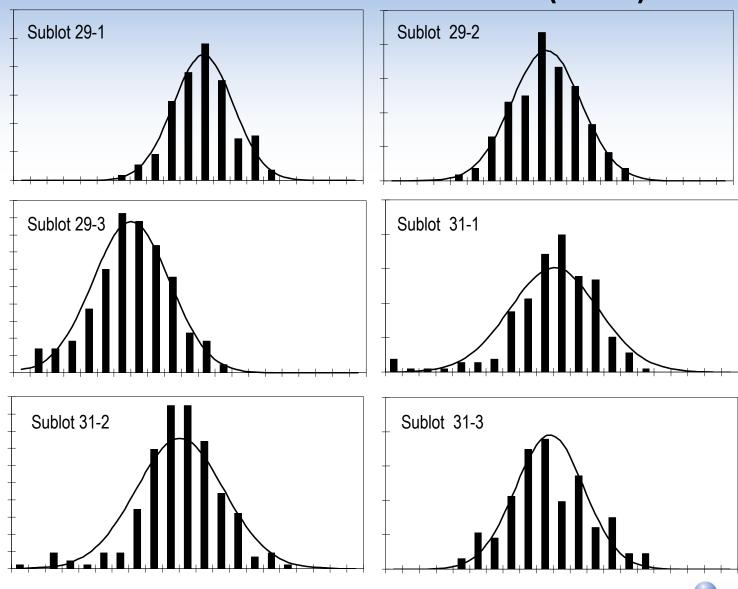
Lot	Core No.	FFRC Modulus, ksi (CORES)				PSPA Modulus, ksi (FIELD)			
No.		Individual Core	N*	Average	COV (%)	N*	Average	COV (%)	Difference #
26*	26-1	5057		4929	4.9%	N/T	N/A	N/A	N/A
	26-2	4651	3						
	26-3	5080							
	27-2	5021		4978	1.4%	216	4714	5.2%	5.3%
27	27-3	5016	3						
	27-4	4898							
28	28-1	5146	4	5127	1.5%	855	5033	5.2%	1.8%
	28-2	5203							
20	28-3	5018							
	28-4	5142							
	29-1	4835	4	4787	9.2%	540	4888	5.2%	-2.1%
29	29-2	5080							
23	29-3	4151							
	29-4	5081							
30*	31-1	4716	3	4980	5.0%	513	4922	4.4%	
	31-2	5019							1.2%
	31-3	5207							

^{*} Not in Our Study, But Cores Available to Test


Comparison of the Thickness Cores to Field PSPA for Baseline (Control) Line 3

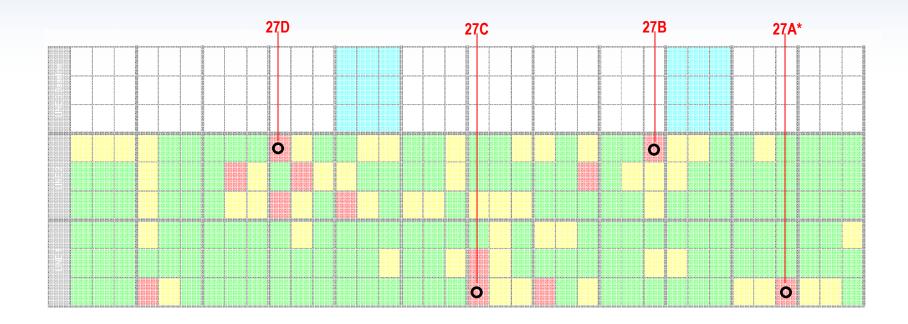
Lot	Core No.	FFRC Mod Ius, ksi (LAB)				PSPA Modulus, ksi (FIELD)			
No.		Individual Core	N*	Average	COV (%)	N*	Average	COV (%)	Difference #
48*	48-1	5022	4	4976	3.5%	9	4767	4.1%	4.2%
	48-2	4717							
	48-3	5084							
	48-4	5081							
	49-1	4715	4	4822	5.8%	30	4929	5.9%	-2.2%
49*	49-2	4475							
49	49-3	5082							
	49-4	5017							
	50-1	4894	- 4	4942	2.8%	21	4675	3.8%	5.4%
50*	50-2	5017							
	50-3	4775							
	50-4	5083							
	51-1	5022	4	4851	2.8%	N/A	N/A	N/A	N/A
51*	51-2	4896							
31	51-3	4713							
	51-4	4775							
52*	52-1	4655	2	5026	10.4%	24	4893	3.8%	2 60/
	52-3	5397						3.0%	2.6%

^{*}Not in Our Study, But Cores Available to Test



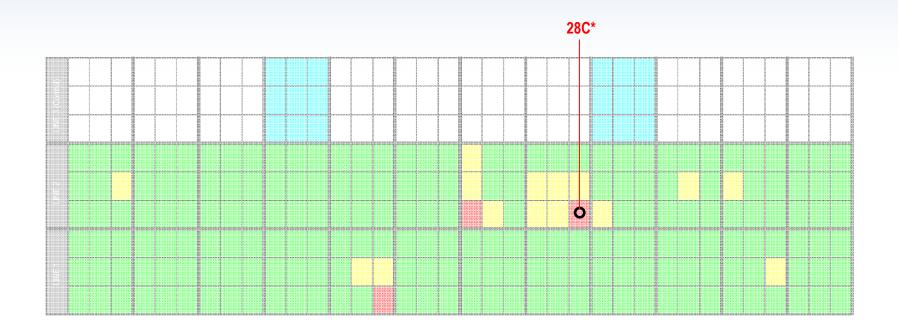
Distribution of TEST SITE Seismic Modulus for Each Sub Lot

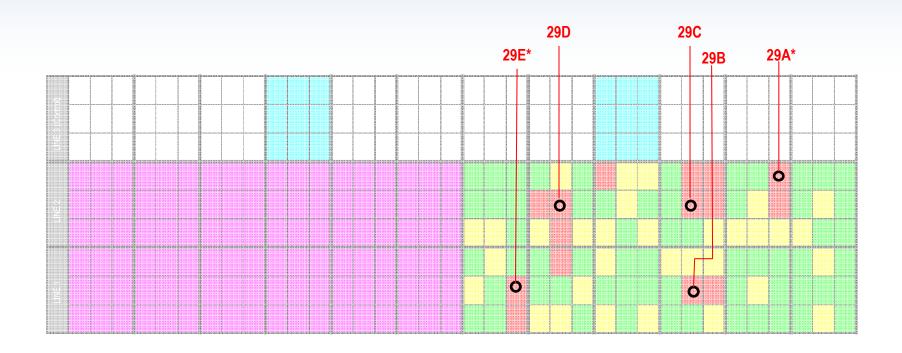
Distribution of TEST SITE Seismic Modulus for Each Sub Lot (Cont)


Further Evaluation of Sublots 27-4, 28-1, 28-2 and 29-3

- Extracted 16 new cores from questionable panels
- Used Petrographic analysis to evaluate new cores extracted
- 4 Control, 4 from 27-4, 2 from 28-1, 1 from 28-2 and 5 from 29-3
- Accomplished 3 tasks on cores: Visual Inspection, Air Void System Analysis & Petrographic Analysis

Core Locations for Sublot 27-4


Core Locations for Sublot 28-1



Core Locations for Sublot 28-2

Core Locations for Sublot 29-3

Petrographic Results

- 5 cores analyzed for air void and petrographic
- All cores air content 6 +/- 1.5%
- All cores spacing factor less 0.008", met ASTM and is most significant for durability
- 2 have paste to air ratio less than 4, ASTM range 4 to 10
- Specific surface of 3 is less than ASTM range
- 2 have fly ash contents significantly higher than other cores

Petrographic Conclusions

- Concrete is sound and intact
- No evidence of major flaws
- Pavement texture is all intact
- Likely that concrete durable to freeze-thaw
- No evidence of ASR

Owner's Decision

- Accept PSPA results of adequate strength for 9 of the 11 sublots (not 27-4 and 29-3)
- Accept Petrographic results for Sublots 27-4 and 29-3 and verified 28-1 and 28-2 could remain
- Allowed all panels in the 11 sublots that were tested, to remain in-place
- Contractor received no payment for the 23 panels with 1 or more "red" test sites

Conclusions

- PSPA testing was successful in verifying the PCC strength
- PSPA identified panels/test sites for additional testing
- Petrographic analysis confirmed the PSPA results
- Petrographic analysis verified PCC could be left inplace

• QUESTIONS?

